
J .  Fluid Mech. (1986), vol. 169, p p .  109-123 
Printed in Great Britain 

109 

On the origin of streamwise vortices in a turbulent 
boundary layer 

By P. S. JANG, 
Dynamics Technology, Inc., Torrance, CA 90503 

D. J. BENNEY 
Massachusetts Institute of Technology, Cambridge, MA 02139 

AND R. L. G R A N  
Dynamics Technology, Inc., Torrance, CA 90503 

(Received 14 May 1985 and in revised form 9 September 1985) 

Several experiments have suggested that streamwise vortices, with their accompany- 
ing low-momentum streaks in a turbulent boundary layer have a characteristic 
spanwise wavelength of approximately A,+ = 100. Here a mechanism is proposed 
which selects a comparable spanwise wavelength and produces counter-rotating 
streamwise vortices in a turbulent boundary layer. Examining the equations which 
describe the deviation of the velocity field from its time-average, i t  is found that a 
resonance (Benney & Gustavsson 1981), is associated with the mean-velocity profile. 
As an integral part of this resonance, there is a mean secondary flow which has a 
spanwise wavelength A,+ = 90 and whose velocities exhibit a streamwise vortex 
structure similar to those observed. 

1. Introduction 
During the last decade, much of the research on turbulent boundary layers has been 

concerned with the coherent eddy structures that have been observed near rigid 
boundaries. The quasi-deterministic, randomly located sequence of coherent struc- 
tures, collectively called the bursting process, is believed to play a dominant role in 
the production and maintenance of a mean turbulent flow (for a review see Cantwell 
1981). 

One important aspect of the bursting process is believed to be the counter-rotating 
streamwise vortex structure with its accompanying low-speed streaks (for example, 
see Blackwelder 1979). From the many measurements of these streaks, i t  has been 
found that the mean streak spacing is approximately 100 V I U ,  where u, is the friction 
velocity and v is the kinematic viscosity. From flow visualizations, such as those by 
Kline et al. (1967), these low-speed streaks are usually observed to end by being lifted 
away from the wall. As they are lifted, the streaks start to oscillate with increasing 
amplitude leading to what is called breakdown. Corino & Brodkey (1969) showed that, 
soon after this breakdown, a large-scale motion emanating from the outer flow field 
approaches the wall and ‘cleans ’ the entire region of the chaotic motion. This phase 
of the bursting process has been called the sweep. 

In experiments using hot-wire anemometers, the bursting process is most easily 
characterized by a sharp acceleration of the streamwise velocity as reported by 
Wallace, Brodkey & Eckelmann (1977), and Blackwelder & Kaplan (1976). This 
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feature of the bursting process was used by Blackwelder & Kaplan as a detection 
technique to single out the bursting process from the chaotic turbulent motions. From 
conditional ensemble averages of data taken in such a way, Blackwelder suggested 
that the sharp acceleration is the transition between the low-speed streak and the 
sweep. 

Recently, Blackwelder (1983) emphasized the similarity between the turbulent- 
boundary-layer bursting process and the transition problem. In particular, he found 
that the conditionally averaged streamwise velocity profile is highly inflexional at 
and before the burst detection. He further speculated that a localized shear-layer 
instability might play a role similar to that in the transition problem. The spatial 
scale of the oscillation of the lifted streak observed in the flow visualizations was noted 
to be consistent with such an interpretation. In  any case, in Blackwelder’s model, 
the counter-rotating streamwise vortex pair plays several important roles. The 
low-speed streaks are attributed to the vortex pair’s ‘pumping’ action of the low-speed 
fluid away from the wall. In  turn, the low-speed region is responsible (at least 
partially) for the inflexional velocity profile which eventually leads to breakdown 
through a shear-layer instability mechanism. 

The aforementioned similarity between the bursting process and the transition 
problem has suggested to some that the streamwise vortices observed in either case 
might be due to the same mechanism. In  this vein, Coles (1979), speculated that the 
streamwise vortices in a turbulent boundary layer might be the result of a 
Taylor-Gortler-type instability in which the concave flow is due to the large-scale 
motion in the outer flow field. This idea predicts a spanwise wavenumber for the 
vortex structure consistent with experiment. However, it appears difficult to justify 
the extension of the steady state Taylor-Gortler stability analysis to the unsteady 
flow field near the flat wall. 

Benney (1961) and Lin & Benney (1962) proposed another mechanism which 
attributes the vortex structure in the transitional case to the secondary mean flow 
induced by the nonlinear interaction of a two- and a three-dimensional wave. 
Although this mechanism reproduced the essential features of Klebanoff, Tidstrom 
& Sargent’s (1962) experiment it has been subject to some criticism. One of the weak 
points of the original theory is that the spanwise wavenumber of the three-dimensional 
wave was chosen to fit the experimental data rather than being predicted (see Stuart 
1967). However, recent studies (Benney 1984) give theoretical justification for the 
approach. 

The purpose of this paper is to provide a possible theoretical explanation for the 
appearance of streamwise vortices in a turbulent boundary layer. The present 
hypothesis stems from what is known as the direct-resonance concept introduced by 
Benney & Gustavsson (1981) in which a three-dimensional disturbance with certain 
wavenumbers can grow to a relatively large amplitude. Benney & Gustavsson showed 
that there exist exact resonances in various linearized laminar stability problems. 
However, they found that resonance conditions were only approximately satisfied 
for the case of Blausius flow. The effects of the resonance on the transition problem 
is therefore obscured by the existence of an unstable Tollmien-Schlichting wave and 
the fact that the resonance is only ‘ close ’. 

The turbulent-pipe-flow experiment by Morrison & Kronauer (1969) indicates that 
the statistically dominant streamwise fluctuations have a wavelike character. This 
suggests that a linear or weakly nonlinear perturbation analysis around the mean 
velocity might be applicable to the turbulent-boundary-layer problem. Along this 
line, Landahl(l967) and, subsequently, Bark (1975) examined the implications of the 
linear theory with given source terms coming from an assumed model for the 
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Reynolds stresses. A particularly interesting result is that Bark’s computed energy 
spectrum for the streamwise velocity fluctuations displays preferred scales in the 
spanwise and streamwise directions and in time which are in good agreement with 
Morrison & Kronauer’s measurements. However, the bandwidth of the computed 
spectrum is a few orders of magnitude smaller than was observed experimentally. 

Bark attributed the sharpness of his computed spectrum to the crudeness of his 
model for the Reynolds stresses. However, his extremely sharp spectral peak suggests 
other possibilities such as some sort of resonance. Bark’s method of solving the 
linearized equation for the vertical vorticity implicitly assumed that there is no 
resonance such as suggested by Benney & Gustavsson. This raises an interesting 
possibility that the Benney-Gustavsson resonance becomes exact if one replaces the 
Blasius profile with the mean turbulent profile. By examining the eigenvalues of the 
Orr-Sommerfeld problem and the vertical-vorticity equation, this was found to be 
the case. Details will be discussed in $2. Since this resonance becomes exact and since 
there is no unstable mode for the mean-velocity profile, the effects of the resonance 
could be more pronounced for the turbulent case than for the transition problem. 
Furthermore, the existence of this resonance offers a possible explanation for the 
observed scales in Morrison & Kronauer’s experiment and the extreme sharpness of 
Bark’s computed spectral peak. 

Based upon direct resonance as an explanation for the preferred scales of the 
three-dimensional disturbances, we then examine the nonlinear effects of this 
resonance by using weakly nonlinear perturbation methods. It is shown in $3 that, 
as an integral part of this resonance, there is a mean secondary flow which has a 
spanwise wavelength 90 v /u ,  and whose velocities exhibit counter-rotating streamwise 
vortex structures. There is some additional discussion in $4. 

2. Direct resonance in a turbulent boundary layer 

parts, following Reynolds & Hussain (1972) : 
The velocity and pressure field in a turbulent boundary layer are split into three 

u, = u,+u,+u;, 

P = P + p + p ‘ ,  

where the overbar denotes the mean motion, the lower-case quantities, ut and p, 
denote the wave-like motion periodic in the horizontal plane, and the prime denotes 
the turbulent motion. The equations governing the wave-like motion can be obtained 
by substituting (2.1) and (2.2) into the Naviel-Stokes equations and subtracting the 
mean part from the phase averaged Navier-Stokes equations ; 

v,ui = 0. (2.4) 

Here, ( 
constant. 

> denotes the phase averaging and v is the kinematic viscosity, taken as 

The mean flow will be assumed to be parallel such that 

(2.5) 

The normal ( y )  coordinate dependence of U for the case of a turbulent boundary layer 
will be considered to be known. The key assumption in the analysis of (2.3) and (2.4) 

- 
u, = (u(Y),o,o). 
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is that the effects of the nonlinear terms in ui are important only intermittently. The 
quasi-periodic streamwise vortices and the accompanying low-speed streaks, which 
seem to provide the set-up for a burst, are assumed to be weakly nonlinear 
phenomena. 

Another assumption is that the effects of the last term of (2.3) are not important 
as far as the near-wall coherent structures are concerned. This assumption corres- 
ponds to the quasi-laminar model examined by Reynolds & Hussain. A partial 
justification for this assumption is that we found no substantial change in our 
results when the quasi-laminar model was replaced by the Newtonian eddy model 
(see Reynolds & Hussain, 1972). 

On the basis of these assumptions, (2.3) and (2.4) are analysed using perturbation 
techniques. In the normal mode approach it is well known that all the eigenvalues 
of the linearized equations of (2.3) and (2.4) lead to decaying solutions, i.e. all 
disturbances lose energy to  the mean flow. However, there is the possibility of a 
resonance by which disturbances with certain scales may grow, at least temporarily, 
by subtracting energy from the mean flow. Since the decay rates of eigenmodes whose 
peak values are near the turbulent boundary layer’s sublayer are rather large, such 
a resonance will only be effective if it occurs in the lowest possible order of the 
expansion in order to reverse the energy loss even momentarily. 

The direct resonance suggested by Benney & Gustavsson does arise in the linearized 
equations of (2.3) and (2.4). A particularly interesting property of the direct resonance 
is that, at a given Reynolds number, it occurs only a t  discrete locations in 
wavenumber space (i.e. only those components with certain combinations of wave- 
length and obliqueness are resonant). Therefore, this resonance appears to be an ideal 
candidate for it provides a mechanism which allows disturbances with only certain 
scales to dominate the dynamics. 

To examine the possibility of direct resonance in a turbulent boundary layer, we 
utilize the boundary-layer displacement thickness S*, and the free-stream velocity 
u, to non-dimensionalize the equations and set Urn S*/v  = R,. As is customary for the 
boundary-layer problem, 2, y and z are taken to denote the streamwise, the normal 
and the spanwise coordinates respectively. The velocity components will be denoted 
by u, v and w. Elimination of the pressure from (2.3) gives 

- 

Here the primes denote differentiation with respect to y ,  is the vertical vorticity, 
E is a nonlinear parameter related to the small amplitude of the fluctuations, and the 
S, are defined by 

a a a 
ax a Y  aZ 8, = - (uu - uu) + - (vu - vu) + - (wu -mi), 

a a a 
ax a Y  a2 

s, = - (uv -uv) + - (wv - 3) + - (ww -wv), 

a a a 
- ax aY az 

s - - (uw - UW) + - (vw - vw) + - (ww -ww). (2.10) 
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The horizontal components of the velocity perturbation are related to  v and 7 by the 
equations 

(2.11) 

(2.12) 

To review the essential ideas of direct resonance, (2.6) and (2.7) are linearized and 
normal mode solutions of the form 

, (2.13) 

, (2.14) 

= qy) eiaz+iar-iwt 

= f(y) eiaz+ipz-iot 

arc sought, where a and /3 are wavenumber components in the streamwise and 
spanwise directions and o is the wave frequency. This procedure leads to  the following 

(2.16) 

subject to the boundary conditions 8 = 0, d8/dy = 0, f = 0 at y = 0, 00. Here, c 
denotes the phase velocity defined by c = @/a. Equation (2.15) is the Orr-Sommerfeld 
(0-S) equation, and (2.16) will be referred to as the vertical-vorticity (V-V) equation. 
The 0-S eigenvalue problem leads to a set of eigenvalues 

c = c(a,  /3; R*). (2.17) 

The V-V equation is usually solved as a forced response. This approach implicitly 
assumes that the eigenfrequencies of the 0s equation do not match any of the 
free-mode eigenfrequencies for the V-V equation ; that  is, the eigenfrequencies of the 
problem 

f F = O ;  f F = O  a t y = O ,  a. (2.18) 41 
Denoting the set of V-V free-mode eigenfrequencies by 

c’ = c‘(a, /3; R*), (2.19) 

the condition for direct resonance can be written as 

If such a resonance condition is satisfied, the solution to the V-V equation behaves 
as 

‘I - e-iot+iaz+ipz 3 (2.21) 

while qy) e -iwt-iaz+iflz (2.22) 

Note that the secular solution for 7 initially grows linearly with time so that 
relatively large horizontal motions would be induced. Here, the parameter a which 
determines the initial growth rate of the secular term is given by 

(2.23) 
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FIQURE 1. The amplitude and phase distribution of the resonant OrrSommerfeld mode. 

In order to determine whether such a resonance occurs when U is taken to be a 
turbulent-boundary-layer mean profile, it is necessary to rely on numerical solutions 
of the eigenvalue problems associated with (2.15) and (2.18). If two eigenvalues 
coincide, then resonant growth occurs. One such resonance was found when the 
wavenumbers (expressed in ‘wall units’ a+ = a u / u , )  are 

a+ = 0.0093, (2.24) 

p’ = 0.035. (2.25) 

The location of this resonance in dimensionless wavenumber space appears to be 
relatively independent of the Reynolds number. (We examined the Reynolds-number 
dependence for the range 1000 < R, < 15000). At this resonant point the eigenfre- 
quencies of the 0 4  and the V-V equations are the same and given by 

WV 
W +  = - = 0.090-0.037i. (2.26) 

This resonance was found numerically by locating the intersection of the zero lines 
of the real and the imaginary parts of [ c (a ,  p;  R,)  - c ’ ( a ,  /?; R,)] in the (a, /?)-plane. 
The boundary-layer velocity profile used for these computations incorporated the 
well-known law of the wall and law of the wake along with a sublayer ‘patch’ based 
on van Driest’s damping factor. This sublayer patch results in a velocity profile that 
is in good agreement with experiment over the entire boundary layer. The normal 
coordinate dependence of the 0 4  eigenmode and V-V eigenmode are plotted in 
figures 1 and 2 respectively. No exhaustive numerical search was made for other 
resonances and while there may be some they will have higher damping rates. 

If there is a potentially large amplitude associated with the secular behaviour, the 
above values of a+, p’ and W& (real part of w ’ )  should correspond to the position 
of a local peak in the power-spectral density of the horizontal velocity. Experimental 
evidence for the correctness of this prediction can be found in Morrison & Kronauer’s 
(1969) experiment. Measuring the fluctuation of the streamwise velocity, they 

u,“ 
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FIQURE 2. The amplitude and phase distribution of the resonant vertical-vorticity mode. 
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FIQURE 3. Comparison of the resonant point with the peak position of Morrison & Kronauer's 
spectrum. 

obtained the power-spectral density as a function of wR and either a or /3. Figure 3 
shows their contour plots of 9',,(a+, w;)  and 9,,(/3+, w;)  where these quantities are 
related to the power spectrum P, as 

(2.27) 

B2,(/3+,w;t) = /3+w&Joa) PU(a+,/3+,w$)da+. (2.28) 

These spectral functions plotted in log coordinates permit one to make a visual 
comparison of the relative power in various wavenumber/frequency bands (the power 
is the contour level times the area as seen in the figure). 

The particular spectrum measured at y+ = 14.8 was chosen because this location 
is the closest of Morrison & Kronauer's data to the peak of the resonant free mode 
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of the vertical-vorticity equation (see figure 2). The predicted position of the spectral 
peak based on the direct resonance is denoted in figure 3 by the intersection of the 
two dashed lines in each figure. The prediction is in good agreement with the 
experimental data. 

3. Mean flow induced by the resonating fundamental modes 
From (2.15) and (2.16), it is apparent that if a, /3 and w correspond to a direct 

resonance, then so do a, -P and w .  So, there are at  least two resonant modes. The 
nonlinear theoretical consequences of two or more resonant modes were analysed by 
Benney & Gustavsson (1981). We shall rely on their formalism to compute the mean 
flow induced by these resonant modes. 

They first observed that (2.6) and (2.7) imply that, for the case of two resonant 
modes, the dominant terms in the higher-order expansion for v and y are of the form 

v N (1 + &4 + . . .) eiaz+iPz-iut 

y - ( t  + &5 + . . . ) eiaz+iSz-iut 

(3.1) 

(3.2) 

where B is the nonlinear parameter related to the small amplitude of fluctuation. They 
argued that for imaginary part of w sufficiently small, the appropriate timescale is 
td and the perturbation expansion must be rescaled in the form 

(3.3) v = v, (u, w, 7) = €-q u, w, N). 
The nonlinear perturbation equations then become 

a 3  a 3  

a x 2  ay ax a2 ay az2 a 
a 2  a 2  a 

a2 

( uw -vw) - - ( w w - W.)] (UU-VU)-2- 
a 3  -- 

-+ -- - - ( uv-uv) + - ( w v- W))] 
+ €4 [(C az2 a 2) (:x 

++[("B++v-w,] a x 2  a 2 2  ay = 0, 

p u av -+-((uu-m)-(ww-ww,) a 2  [G+G)-t 1 N+d [ -'aZ axaz 

( U V - U v ) - -  a 2  (VW-..)I = 0, (3.5) + --- (UW-UW) + €  - 
(;;2 3 ~1 [a:L ax ay 

au aw ,av 
ax aZ ay 

-+-++z- = 0, 

(3.4) 

Equation (3.5) is linear when e = 0, and a systematic perturbation scheme is readily 
developed (i.e. N = N(O)+stN(i)+ .. ., etc.). The zeroth-order term in such an 
expansion gives 

N(0) = Bri,(y) sin Po z eiaoz-iud + B*f$(y) sin Po e-i%z+iw@ (3.8) 
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where * denotes the complex-conjugate. Note that the spanwise standing wave is 
taken as the solution since each of the resonances, (a = a,, /3 = &Po), are equally 
likely to occur. The function $, is determined as a solution to the eigenvalue problem 

where a, and Po are the wavenumbers at the direct resonance. Using the continuity 
equation and the definition of N, U(O) and W(O) can be obtained from N(O) as 

The equation for V(O) is obtained from (3.4) : 

a3 

a22 ay 
a3 

( U(O) W(O)) + - ( W(O) W'O)). (3.11) +2- 

The time averages of U(O) U(O), U(O) W(O) and W(O) W(O) are dropped since Go) and W(O) 
eventually decay exponentially in time. An examination of the source terms shows 
that the particular solution for V(O) is of the form 

V(O) = VM(y, t )  cos (28, Z) + (V, , (y)  e2iaos-2iw 0 +*). (3.12) 

We shall refer to the first term as the induced mean flow and the second term as the 
induced second harmonic. The function V,(y,t)  is determined as a solution of the 
following equation 

ax aZ a y  

where wI is the imaginary part of w,. The function V,,(y) is determined from 

(-2io,+2ia0ii) --4a; -2ia U"-- (a2  --4a2 0>a]vp2 
(!;2 ) 0 R,  ay2 

As long as (2w,) is not an eigenfrequency of the 0 4  problem for the case of a = 201, 
and p = 0, the above equation for V,, has a solution. 

However, the equation for the induced mean flow requires special treatment. 
Although the source term in the equation for V, decays with time as exp (2w1 t ) ,  the 
solution V, cannot have the same time dependence. To illustrate this we first assume 
that V, has the same exponential time dependence, in which case (3.13) reduces to 

where vM is defined by VM = v M ( y )  e2'+. For simplicity we assume that the right-hand 
side of the above equation vanishes for larger values of y .  The asymptotic solution 
for vM will then be of the form 

vM = a e-2'Q' + b exp[ - y(4R + 2wIR,):]. (3.16) 
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If (2w, R, + 4fi) is positive, then the sign of the square root can be chosen to be 
positive so that vM vanishes a t  infinity. However, the argument of the square root 
at the resonant point is negative. 

To obtain a solution V, (y, t )  of (3.13), which vanishes at y = co, we solve it as an 
initial-value problem without assuming the exponential time dependence. Since it is 
not clear which initial condition for V ,  (y, t )  is an appropriate one, it will be assumed 
that it vanishes initially and examine the y- and t-dependences of the resulting 
solution. 

In  order to solve the initial-value problem, the Laplace transform of (3.13) is taken 
to give 

where VM is the Laplace transform of V, defined as 

VM(y, S )  = s," dt e-ist VM(y, t ) .  (3.18) 

The above equation for vM is solved using the Green function technique. The Green 
function takes the following form : 

A+ exp [(y- y0)(4/$ + iR,s)4 +B+ e-2bo(Y-Yo) for y > yo, 

= A-exp [(y-y0)(4fi+iR,s):]+ B- e-zPo(Y-Yo)+C- exp [(y-yo)(4fi+iR*s)i] i + D -  e2bo(2'-Yo) for y < yo, (3.19) 

where yo denotes the support of the delta function, and the coefficients A,, B,, C- 
and D- are determined from the boundary condition at the wall and the continuity 
of G, G and G" and the jump condition of G at y = yo. Since rM does not have a 
homogeneous solution, the Green function is uniquely defined by these conditions. 
The branch cut associated with the square root is chosen as in figure 4. 

The function V, (y,t) is then computed by taking the inverse Laplace transform 
where the integration contour in the complex s-plane should lie below all the poles 
and the branch cut  of the integrand. Note that the pole associated with the source 
term is located on the branch cut since R, > 2fi/lw,l. Further, the singularities in 
the expressions for the coefficients A + ,  etc. are removable. Therefore, the contour 
can be deformed to a branch-cut integral. For the integration along the branch cut 
and for the integration over yo, we have to rely on numerical evaluation. Figure 5 (b) 
shows the results. Note that the y-dependence of VM(y, t )  does .not change very much 
with time. The amplitude of V, reaches its maximum value at  t+ = tuJv = 40 and 
then decays very slowly compared with the source term's decay rate. (Recall that 
the source term of (3.13) decays as exp (-0.074 t + )  ; in contrast, the value of V, at 
t+ = 200 is still about 5 of its peak.) 

To obtain the horizontal components of the induced mean flow, (3.5) is examined 
up to the order of 4. Using (3.10) for U(O) and W(O), and (3.12) for V0), the equation 
for N(4) can be simplified to 

[(:+Ti:)-$ A ]  NO = 2P0U'VM sin (28,~). 

As for the computation for V,, a solution is sought of the form 

(3.20) 
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FIQURE 4. Branch cut of (4A+iR.S)4 and integration contour I'. (4E+iR,S)+ is defined by 
R.fr expi($J+in) where 0 varies from (-in) to (+r). 

+ 
12 

0 

1 

0 
FIGURE 5. Plots of the (a) vertical and (a) streamwise components of the induced mean flow. 

The maximum of I VM(y, t )  I is about 43 % of the maximum of VM(y, t ) .  
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FIGURE 6. Computer streamline pattern of the induced mean flow at t+ = 40. This pattern does 
not change for other values oft+ as can be inferred from figure 5. 

The resulting equation for N M ( y ,  t )  is solved again as an initial-value problem 
assuming that NM vanishes initially. Using the Laplace transform and the Green- 
function technique, the computation of N M  can also be reduced to  an evaluation of 
an integral over yo and over a contour in the frequency domain. Once N M  is computed, 
the horizontal components of the induced mean flow are obtained using the continuity 
equation and the definition of the vertical vorticity. 

To summarize, the induced mean flow is given by 

(3.22) 

where U ,  is related to  N M  by 

u ---. N M  (3.23) 

The y, t dependence of U ,  is plotted in figure 5 (a). As for the vertical component of 
the induced mean flow, the y-dependence of U ,  is rather independent of time. The 
amplitude of UM reaches its maximum value at t+ = 150 and then decays very slowly 
with time. I n  order to interpret the results plotted in figure 5, i t  is helpful to  plot 
the projection, on the (y, 2)-plane, of the streamlines. Figure 6 shows the streamline 
pattern at t+ = 40. Actually, since the y-dependence of VM does not change very much 
with time, the streamline pattern is about the same for all time. The streamline 
pattern clearly shows the counter-rotating longitudinal vortex structure of the 
induced mean flow. The spanwise wavelength A,+ of the induced mean flow is 90, which 
compares favourably with the experimental value of 100. 

At z+ = 0, the counter-rotating vortices pump the low-speed fluid up away from 
the wall so that the streamwise component of the induced mean flow would show a 
momentum defect. These low-speed streaks would occur every 90 wall units in the 
spanwise direction. 

I n  figure 7, the y-dependence of the computed vortex structure with accompanying 
low-speed streaks is compared with the vortex structure determined by Kim’s (1983) 
numerical simulation. Only the shape is compared since the absolute values are not 
available in our analysis and the relative strengths of (V),,, and (U),,, are not 

- 2ao 
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FIGURE 7. Comparison of the computed vortex structure with that of Kim (1983). The solid lines 
represent the analysis result and the circles represent Kim’s result at x+ = 125, where z+ = 0 
corresponds to the burst detection point. o1 denotes the streamwise vorticity. 

available in Kim’s paper. The similarity of our computed vortex shape with Kim’s 
simulation supports the relevance of the resonance mechanism to the bursting 
phenomena. The agreement between Kim’s simulation results and Blackwelder & 
Kaplan’s experimental results is generally good if the slight differences are attributed 
to the difference between temporal and spatial averaging. 

4. Concluding remarks 
It is natural to be concerned with the robustness of the direct resonance and for 

this reason the effect on resonant conditions of different boundary conditions, mean 
profiles, and with eddy-viscosity terms in the equation were examined. As mentioned 
in $2, replacing the quasi-laminar model with the Newtonian eddy model does not 
affect the existence of a direct resonance and the computed induced mean flow 
exhibits features similar to those described in $3. With the mean profile observed by 
Reischman & Tiderman (1975) for a polymer-injected turbulent boundary layer, the 
direct resonance was still found to remain. The spanwise wavenumber at the 
resonance is, however, smaller than that for the ‘universal ’ mean profile, which agrees 
with experimental evidence of the wider streak spacing for a polymer-added flow. We 
also confirmed that direct resonance is virtually unaffected even if we replace the rigid 
wall with a compliant wall. 

There are, of course, several aspects of the present theory that remain incomplete. 
However, this study provides strong evidence for the relevance of direct resonance 
to the appearance of streamwise vortices observed in a turbulent boundary layer. In 
terms of the energy exchange between the mean flow and the fluctuations, direct 
resonance can be interpreted as follows: the source term in the linearized vertical- 
vorticity equation (2.16) reflects the production of horizontal disturbance energy by 
the action of the mean field U against the uv-component of the Reynold’s stresses. 
When the wavenumbers and the frequency associated with the Orr-Sommerfeld 
eigenmode correspond to those of a free mode of the vertical vorticity, the production 
of energy through the uv-Reynolds stress becomes more efficient. This situation is 
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similar to the harmonic oscillator driven by broadband noise about its natural 
frequency. 

We found two main pieces of evidence for the relevance of such a mechanism to 
the bursting process. One is that the wavenumbers and frequency at resonance are 
close to the values associated with the most-intense waves measured by Morrison k 
Kronauer near the sublayer boundary. The other is that the secondary mean flow 
induced by this resonant fundamental mode contains a streamwise vortex structure. 
The theoretical shape of the vortices and the spacing of the accompanying low-speed 
streaks are comparable with experimental findings. 

One of the problems which has not been addressed is a comparison of the resonant 
point and other points in wavenumber space. In order to extend the theory to predict 
the power-spectral distribution, this issue has to be addressed. A difficulty associated 
with this extension is that although the resonant mode initially grows with time, the 
exponentially decaying factor eventually dominates and the mode decays. Therefore, 
without a fresh supply of disturbances, this resonance cannot sustain itself. In this 
respect, a potentially important property of this resonant mode seems to be the 
inflexional instability. As a test, we considered a one-parameter family of mean 
profiles which starts with the universal mean profile at s = 0 and ends with the 
inflexional profile found by Blackwelder & Kaplan at s = 1 (i.e. u,(y) = 
(l-s)u(y)+su,,, where uBK denotes the Blackwelder & Kaplan profile. As s in- 
creases, the damping factor associated with the Orr-Sommerfeld mode becomes 
smaller and near s = 0.7 that mode becomes unstable. As it becomes unstable, it can 
no longer resonate with the vertical vorticity mode since it can be shown analytically 
that all the free vertical vorticity modes are damped. Although at s = 0 the resonant 
Orr-Sommerfeld mode is not the least-damped mode (actually it is the second 
least-damped mode ; the eigenfrequency of the least-damped mode being 
w +  = 0.13 +O.O35i at a+ and 8' given by (2.24) and (2.25)), as s increases this order 
in damping factor changes and only the resonant mode becomes unstable at  s = 1 .  
These two properties of the second mode (when ordered by the imaginary part of the 
eigenfrequency), i.e. the direct resonance and the inflexional instability, might be the 
reasons why it plays an important role even if it has a slightly larger damping factor. 
However, to estimate these effects quantitatively appears to require a more systematic 
account of the several lowest modes with varying wavenumbers. 

Another problem which has not been considered concerns the origin and math- 
ematical description of the sweep. This might involve a very complicated interaction 
between the outer flow and the near-wall flow. In  this regard, it seems appropriate 
to mention that the induced mean flow in $3 was represented by an integral along 
a branch cut in the complex frequency plane. This branch cut is what Mack (1976) 
interpreted as the continuous spectrum. For a frequency in this continuous spectrum, 
the corresponding eigensolution does not decay exponentially but becomes oscillatory 
as y approaches infinity. This raises a possibility that the interaction between the 
inner and the outer flows could be described through the induced mean flow. Recall 
that the initial condition for the induced mean flow was chosen to be zero in $3 since 
we do not know what an appropriate condition should be. Perhaps by choosing an 
initial condition as appropriate to a finite wavepacket rather than an infinite plane 
wave, the time development of the induced mean flow would exhibit characteristics 
of the sweep in addition to the vortex structure. 
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